ELEKTROTEHNI^KI FAKULTET UNIVERZITETA U BEOGRADU

-magistarska teza-

Sinteza digitalnog polinomnog regulatora brzine brzinskog servo pogona

Mentor: Prof. Dr Slobodan Vukosavi} Kandidat: Milun Peri{i} dipl. in`.

Sadr`aj rada

- Predmet istra`ivawa:
- Upravqawe brzinom servo pogona visokih performansi
- Predla`e se:
- Metod optimalnog pode{avawa parametara digitalnog regulatora brzine
- Modifikovana forma polinoma opservera

Sadr`aj rada

Prikazani su:

- Algoritam za sintezu polinomnog regulatora
- Parametarska optimizacija polinomnog regulatora
- Efekti primene predlo`ene strukture regulatora u servo sistemu DBM01 zasnovani na ra~unarskim simulacijama

Pole placement

 Skup metoda za kreirawe karakteristika sistema sa zatvorenom povratnom spregom

$$\begin{array}{c} u_c \\ \hline \\ R u = T u_c - S y \\ \hline \\ \end{array} \begin{array}{c} v \\ H \\ \hline \\ B/A \\ \hline \\ \end{array} \begin{array}{c} e \\ B/A \\ \hline \\ \end{array} \begin{array}{c} e \\ B/A \\ \hline \\ \end{array}$$

Sistem sa zatvorenom povratnom spregom $y = (BTu_c + BRv - BSe)/(AR + BS)$

Pole placement

 Izjedna~avawem funkcije prenosa sistema sa zatvorenom povratnom spregom i `eqene funkcije prenosa, dobijaju se slede}e jednakosti
A(z)R(z)+B(z)S(z)=A_m(z)B⁺(z)A_n(z)

 $B(z)T(z) = B_m(z)B^+(z)A_o(z)$

Prva jedna~ina je Diofantova polinomna jedna~ina

Pole placement

 Da bi sistem sa zatvorenom povratnom spregon bio kauzalan moraju se zadovoqiti nejednakosti

 $degA_{m}(z) - degB_{m}(z) \ge degA(z) - degB(z)$ $degA_{o}(z) \ge 2degA(z) - degA_{m}(z) - degB^{+}(z) - 1$ $degR(z) \ge degT(z)$ $degR(z) \ge degS(z).$

Brzinski servomehanizam Slika 1. Op{ta blok-{ema.

Savremeni brzinski servomehanizmi koriste:

- Aktuator PWM invertor sa digitalnom regulacijom statorske struje
 - Dava~ elektromagnetni rizolver sa sinhrokonvertorom
- Elektri~nu ma{inu asinhroni motor ili sinhroni motor sa permanentnim magnetima

Aktuator

Slika 2. Aktuator sa digitalnom regulacijom statorske struje.

Aktuator

U digitalnom upravqawu statorskom strujom,

javqa se problem merewa struje

prora~un upravqa~kog signala uti~e na dinamiku digitalne strujne petqe

ograni~ena je mogu}nost smawewa periode odabirawa Ts

Aktuator

U vektorskom upravqawu, kona~na brzina odziva statorske struje za posledicu ima ka{wewe izlaznog momenta MNS

U prvoj aproksimaciji, ka{wewe aktuatora mo`emo modelovati dominantno vremenskom konstantom

$$\frac{M_e(s)}{M_e^*(s)} \cong \frac{1}{1 + \tau_{em} s}$$

Dava~

- Digitalni ekvivalent pozicije u sinhrokonvertoru kasni za kontinualnom pozicijom
- U prvoj aproksimaciji, ka{wewe sinhrokonvertora mo`emo modelovati dominantnom vremenskom konstantom

$$\frac{\theta_{out}}{\theta_{in}}(s) \cong \frac{K_n}{1 + \tau_{rd} s}$$

Slika 3. Struktura brzinskog servomehanizma sa ura~unatim ka{wewima.

Diskretizacija kontinualnog sistema Na osnovu modela kontinualnog sistema potrebno je izvr{iti diskretizaciju sistema sa periodom odabirawa T

Ka{wewe aktuatora i sinhrokonvertora mo`emo modelovati vremenskim ka{wewem prvog reda

$$W_{\rm e}(s) = \frac{1}{1+ds} \qquad d = \sqrt{\tau_{em}^2 + \tau_{rd}^2}.$$

Diskretizacija kontinualnog sistema

Rezultat diskretizacije kontinualnog dela sistema je diskretna funkcija prenosa B(z)/A(z)

@eqena funkcija prenosa sistema sa zatvorenom povratnom spregom je:

$$H_m(z) = \frac{(1-\sigma)^n}{(z-\sigma)^n}.$$

Sinteza regulatora

$\frac{B_m(z)}{A_m(z)} = \frac{B(z)T(z)}{A(z)R(z) + B(z)S(z)}$

Slika 4. Struktura brzinskog servomehanizma.

Sinteza regulatora

Polinom opservera

$$A_{o}^{3rd}\left(z\right)=\left(z-a\right)^{2}$$

$$A_{o}^{5rd}(z) = (z-a)^{2}(z^{2}+c_{1}z+c_{2})$$

Optimalne vrednosti parametara σ i *a* nalaze se parametarskom optimizacijom koja se sprovodi *Jury*-jevim kriterijumom stabilnosti polinoma *R(z)* i minimizacijom funkcije osetqivosti na promene parametara procesa.

Slika 5. Stabilna oblast polova σ i *a* za sistem tre}eg reda.

Slika 6. Zavisnost funkcije osetqivosti od polova σ i *a* za sistem tre}eg reda.

Slika 7. Stabilna oblast polova σ i *a* za sistem petog reda i *d* =2.

Slika 8. Zavisnost funkcije osetqivosti od polova σ i *a* za sistem petog reda.

Slika 9. Zavisnost brzine i M_{em}^* za sistem tre}eg reda i za polove $\sigma = 0.8$ i a = 0.8.

Slika 10. Zavisnost brzine i M_{em}^* za sistem tre}eg reda i za polove σ = 0,8 i a = 0,8 za 2*J.

Slika 11. Zavisnost brzine i M_{em}^* za sistem petog reda i za polove $\sigma = 0,7$ i a = 0,8.

Slika 12. Zavisnost brzine i M_{em}^* za sistem petog reda i za polove σ = 0,6 i a = 0,8 i 2*J.